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ABSTRACT

The strengths of sapphire disks of two different crystallographic orientations and
bars of three different orientations were measured as a function of temperature in ring-
on-ring flexure or 4-point bending. One set of disks (OO cut) had the crystallographic
C -axis normal to the flat surface which contained the crystallographic a- and m -axes. The
average strength of these disks dropped from 154 ksi at 20°C to 21 ksi at 800°C. In another
set of disks (900 cut), the crystallographic c- and m -axes were parallel to the flat surface.
The average strength of these disks dropped from 84 ksi at 20°C to 48 ksi at 800°C. The
strength of sapphire bars whose tensile axis was the crystallographic m axis dropped from
103 ksi at 20°C to 86 ksi at 1400°C. The strength of sapphire bars whose tensile axis was the
crystallographic a-axis dropped from 113 ksi at 20°C to 74 ksi at 1400°C. The strength of
sapphire bars whose tensile axis was the crystallographic c-axis dropped from 153 ksi at
20°C to 35 ksi at 1400°C.

1. INTRODUCTION

Single-crystal sapphire is a strong, hard optical material with good thermal shock
resistance, low optical scatter, and excellent transmission at wavelengths between 0. 15 and
5-rim. 1-3 Recent advances in manufacturing technology promise to reduce the cost of high
quality material.4'5 The strengths of sapphire fibers,6 1 1 single crystals of various orien-
tations,'216 and polycrystalline material14 have been measured previously as a function
of temperature, but adequate data for engineering design with bulk single-crystal sapphire
is lacking. Two studies of sapphire filaments whose long axis is the crystal c-axis found
tensile strengths of approximately 2801 1 and 3806 ksi (ksi = 1000 lbs/in2) at 20°C. There is
an initial sharp drop in strength to a minimum in the region 250-600°C, an increase of
strength up to 900-1000°C and then another decrease of strength at higher temperature.1 1
a-Axis sapphire filaments had similar strength and temperature-dependence of strength as
c-axis fibers.7 Four measurements12 16 of the flexure strength of bulk single-crystal
sapphire of various orientations gave strengths at 20°C in the range 20-120 ksi. Two studies
of the tem,perature dependence of this strength showed a minimum in the 300-600°C
range, 14, 1 A third study showed decreasing strength from 20 to 250 to 6 for one
crystal orientation, while a fourth study noted decreasing strength from 20 to 500 to 1000°C
for two different crystal 1 2 The strength of polycrystalline alumina was
constant from 20-800°C before gradually decreasing at higher temperatures.'4 The design
minimum tensile strength of Czochralski-grown sapphire is listed by one manufacturer as
58 ksi at 20°C, 40 ksi at 500°C, and 52 ksi at 1000°C.'7 The present work was undertaken to
provide flexure strength data as a function of temperature and crystal orientation for bulk
single-crystal sapphire with a representative optical finish scratch/dig specification of
60/40.
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2. SPECIMENS

Sapphire obtained from Crystal Systems (Salem, Mass.) was grown by the Schmid-
Viechnicki method and polished to a nominal scratch/dig specification of 60/40 using a
random circular motion. Flexure testing was carried out at the University of Dayton
Research Institute, Wright-Patterson Air Force Base, Ohio, with an Instron Model 1123
Universal Testing Machine at a crosshead speed of 0.508 mm/mm at the specified tempera-
tures. Bend bars with dimensions 45 x 4 x 3 mm were subjected to 4-point flexure testing
using loads separated by 10 mm and supports separated by 40 mm on the 45 x 4 mm faces.
The long edges of the bars were rounded to a radius of 0.08-0.13 mm and polished using a
random circular motion. Ring-on-ring biaxial flexure testing of 2-mm-thick disks with a
diameter of 38 mm was performed with a load ring radius of 7.937 mm and a support ring
radius of 15.875 mm.

Figure la designates various faces of a sapphire crystal and Fig. lb provides a view
down the 3-fold symmetry c-axis of the crystal. The crystallographic a-axis in Fig. lb is a
2-fold symmetry axis. The m- and c -axes in Fig. la define a mirror symmetry plane. Five
types of specimens were prepared for flexure testing. Figure 2 shows a bend bar in which
tension will be directed along the rn-axis, with the c-axis perpendicular to the tensile face.
In Figs. 3 and 4 the tensile axes are the crystallographic c- and a-axes, respectively. Figures
5 and 6 show two orientations of disks used for ring-on-ring biaxial flexure testing. In one
case (called a O cut) the c-axis is perpendicular to the disk face and in the other case
(called a 900 cut) the disk face is the a-plane containing the c- and rn-axes.

3. STRESS ANALYSIS

Stress levels at fracture for the 4-point flexure bar specimens were computed from
simple beam theory as

9PL
yU= 28wt (1)

where u is the maximum stress on the tensile surface of the bar, P is the applied load, w is
the width of the bar, t is the thickness of the bar, and L is the length of the bar between
supports. The stress on the tensile surfaces of the bar varies linearly from this maximum
value to zero at the supports in the longitudinal direction (bottom of the bar) and at the bar
neutral axis in the bar thickness direction (sides of the bar).

Flexure strength measurements reported later in this paper indicate that the
strength of sapphire in the crystallographic a direction is similar to the strength in the rn
direction. Therefore, stress levels at fracture for disks with the c-axis normal to the flat
surface were computed from Equation 2, which applies to an equibiaxial stress field.' 8 19

U= 2 {[21+vIfl()]+[1 v)()][1 ()2]}4irt (2)

where c7u is the maximum equibiaxial stress on the tensile surface of a disk of thickness (t)
inside of the load ring radius (b) where the applied load is P and v is Poisson's ratio. The
disk has outside radius (R) and is supported on a ring of radius (a). The corresponding
stress levels for a point on the tensile surface outside of the load radius, b, are given by the
equations
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ur
( 2){ [2(1 + v)In()]+ [ - v)()] [ - () 1}
4ict (3)

ut 2 { [2(1 + v)In()]+ [(1 - v)()] [2 - ()2 2]}(4t ) (4)

where ur is the local radial component of stress and ut is the local hoop component of
stress at radial position (r).

Stress levels at fracture for disk specimens with the c-axis parallel to the flat surface
of the disk were derived from a finite element model using the ABAQUS2O computer pro-
gram and the orthotropic material properties shown in Tables 1 and 2. An orthotropic
model was used in the analysis because of crystal symmetry. The modulus data shown in
Table 1 were used to derive the linear elasticity matrix coefficients shown in Table 2. A 900
segment of the flexure disk geometry was subdivided into 1800 finite elements (Fig. 7). The
disk segment was simply supported at radial location, a, and a load of P/4 was distributed
along the curve, r = b. The edges of the disk segment parallel to and intersecting at the
disk axis of symmetry were constrained to zero rotation about the disk radius.

4. FRACTURE STATISTICS

The survival of a brittle material subjected to a general biaxial stress state at its
surface has been described statistically by Batdorf21 as

In =—
C (5)

where P is the probability that an elemental area, A, will survive with a critical crack
strength of ac if the probability that such a crack is present in the material surface is
dN/dYc, and when the probability that the crack is facing a direction that will permit
fracture is (0/it. This equation may be restated in a more convenient computational form as
follows:

m
[a 1s_ ic[joc c c

where Kc 3c/az, colic = 20/it, m is the Weibull modulus, y is the Weibull scaling parameter,
is the principal stress in the z-direction and 0c and 4c are critical crack orientation angles
defined in Fig. 8. The critical surface crack orientation angles are determined from a root
of the equation, 2 2

G(KHK ,Ka,Kb,Kc,4c,Oc=__!!.___!.=og / Z Z (7)
where is the stress component in the x-direction (Fig. 8), , is the stress component in
the y-direction, e is the effective stress applied at the tip of a crack, is the crack
strength. The remaining variables in Equation 7 are defined below.

K —' K — K _um K° ua ' bCT. (8)
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and UBaU{1[1K81c0s(3} (9)
where um is the average flexure strength with the tensile axis along the m -axis, ua is the
average flexural strength with the tensile axis along the a-axis, and is the average
flexural strength with the tensile axis along the c-axis. Finally, the two terms on the right
side of Equation 7 are defined by the relations

2 r 2 2" 2 21cos +K sin in 9+cos Oi+a 1LH U I J

{ a2[(K cos2+ Ksin2in2O+ cos2O]2+ 03[1_ K cos2 — KSIfl2]SIfl2OCOS2O} (10)

and

c ,jcos2o+ K2 sin2Oz b (11)

where ai = 0, a (1. 1215)2, and a = (1/(1-0.5v)2 are constants derived from strain energy
release rate relations for a penny-shaped surface crack.2 2

The probability of survival of a particular flexure specimen was determined by first
subdividing the tensile surface of the flexure specimen into elemental areas and then
computing the probability of survival for each of these elemental areas. The product of the
individual area element probabilities of survival was then the approximate probability of
survival of the flexure specimen. The Weibull parameters, and m, were then determined
by minimizing the absolute error between the predicted and experimental probabilities of
failure (P1 = 1 - P) for the flexure specimen tensile surfaces using the Downhill Simplex
method.2

5. RESULTS

Although 40 bars were tested at each temperature, approximately half of the results
above 20°C were discarded because fracture appeared to occur at the load or support
positions. All of the bar data collected at 20°C were acceptable and all of the disk data
collected at 20 and 800°C were considered valid. Figures 9-13 present the variation of
flexure strength with temperature for the specimens in Figs. 2-6. The vertical bars are
standard deviations. Table 3 presents a summary of the average flexure strength (c),
Weibull statistics (m and ) and strength ratios (Ka and Kb in Equation 8) for both the
uniaxial bar and the biaxial disk specimens. The first set of rn-axis tensile bars in Table 3
has only 34 results because six specimens were tested with a different load span from the
rest. Figures 14-16 present a comparison of the experimental probabilities of failure and
the best fit obtained from Batdorfs theory for the 4-point uniaxial flexure tests at 20°C.

The filled squares in Fig. 17 are experimental results for the disks in Fig. 5 tested at
20°C. The open squares (and solid line) are from the best fit biaxial analysis. The triangles
in Fig. 17 show the expected behavior of these disks when the uniaxial constants from the
a-axis and rn-axis 4-point bend specimens are used to predict the probability of failure. The
uniaxial results predict a higher probability of failure at a given stress than is observed in
the biaxial case. The bars, therefore, give a conservative prediction for the disks. Figure 18
gives the corresponding results for the disks in Fig. 6 tested at 20°C. In this case, the
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uniaxial results predict a slightly lower probability of failure than is actually observed for
the disks.

6. DISCUSSION

The biaxial flexure strengths reported in Table 3 for the disks in Fig. 5 (OO cut) are
consistent with a previous rt2 in which the strength of 50.8-mm-diameter disks with a
thickness of 2.54 mm dropped from 102 ksi at 20°C to 50 ksi at 500°C and 22 ksi at 1000°C. We
observe a decrease in strength from 154 ksi at 20°C to 21 ksi at 800°C for stress in the plane
of the a- and m -crystallographic axes. In contrast, the disks in Fig. 6, for which tensile
stress is applied in the plane of the c- and rn-axes, decreases from 84 ksi at 20°C to 48 ksi at
800°C. Taken together, these two sets of results imply that c-axis strength is less than a and
rn -axis strength at 20°C, but that c-axis strength does not decrease as much as a- and m -axis
strength when the temperature is raised to 800°C.

The 4-point bending results in Table 3 show that the strength in the direction of the
a-axis is essentially equal to the strength along the rn-axis. The 4-point uniaxial flexure
results are not consistent with the biaxial flexure strengths. The bars show that the c-axis
is the strongest at 20°C, whereas the disks imply that the c-axis is the weakest. The bars
show that the strength drops the most along the c-axis as the temperature is raised, whereas
the disks show the least drop for c-axis strength.

When the Weibull constants derived from 20°C uniaxial flexure tests are applied to
the 20°C biaxial flexure test data (c-axis normal to tensile surface), the theory conserva-
tively predicts a higher probability of failure at a particular stress level than observed
experimentally (Fig. 17). The theory significantly underpredicts the probability of failure
when the Weibull constants derived from 500-1000°C uniaxial flexure tests are applied to the
800°C biaxial flexure test data for the same crystal orientation.

Application of Weibull constants derived from 20°C uniaxial flexure tests to the 20°C
biaxial flexure tests which had the crystal rn -axis and a-axis parallel to the tensile surface
slightly underpredict the observed probability of failure (Fig. 18). In this instance the
theory again underpredicts the probability of failure when the Weibull constants derived
from 500-1000°C uniaxial flexure tests are applied to the 800°C biaxial flexure test data for
the same crystal orientation.

Sapphire window and dome temperatures in typical thermal shock applications are
normally less than 500°C. For these applications, it is recommended that the strengths and
biaxial fracture statistics shown in Table 3 for 20°C be used in conjunction with a stress
analysis to predict the probability of failure for the sapphire component. The uniaxial and
biaxial results at elevated temperatures in Table 3 are contradictory and should be used with
caution in the absence of further experiments.
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Table 1. Young's Modulus of Sapphire.24

T
(°C) (106 psi)

Eaaxjs
(106 psi)

Emaxjs
(106 psi)

20 63.3 55.8 55.8
815 59.4 52.4 52.4

1095 55.5 48.9 48.9
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Table 2. Orthotropic Elasticity Matrix Constants.

Temp C1111 C1122 C2222 C1133 C2233 C3333 C1212 C1313 C2323

(°C) (lO6psi) (lO6psi) (lO6psi) (lO6psi) (lO6psi) (lO6psi) (lO6psi) (lO6psi) (lO6psi)
20 76.826 25.048 68.355 25.048 24.418 68.355 24.920 24.920 21.969

815 72.104 23.526 64.196 23.526 22.936 64.196 23.390 23.390 20.630

1095 67.352 21.949 59.898 21.949 21.394 59.898 21.850 21.850 19.252

Poisson Ratio = v = 0.27. Moduli are assumed to be constant above 1093°.

11 C1111 C1122 C1133 C1112 C1113 C1123 e11

22 C2222 C2233 C2212 C2213 C2223 e22

cy33 — C3333 C3312 C3313 C3323 c33

t12 symm. C1212 C1213 C1223 2
-r C C I13 1313 1323 13
t23 C2323 123

a c a = direct stress i ni 2 3 directions11 22 33
ti 2' 1 3 ' 23 shear stress i n the 12, 13, 23 planes

C and i arethe respective strains

Table 3. Summary of Sapphire Flexure Strength and Batdorf Fracture Statistics.

Tensile No. of ut Std Dcv

Axis T (°C) Spec* (ksi) m Ka Kb (ksi) (ksi)
m 20 34 70.28 4.00 0.904 1.494 103 29
(Fig. 2) 500 12 83.34 3.78 0.992 0.705 122 32

1000 14 68.55 13.7 0.769 0.321 76 6
1400 18 72.06 7.81 1.164 0.407 86 11

a 20 40 74.92 3.59 0.904 1.494 114 34
(Fig. 3) 500 20 73.34 2.09 0.992 0.705 123 54

1000 2 ... ... ... ... 99
1400 13 62.72 8.55 1.164 0.407 74 8

C 20 40 108.49 3.28 0.904 1.494 153 50
(Fig. 4) 500 39 60.02 4.31 0.992 0.705 86 22

1000 40 16.48 4.37 0.769 0.321 25 59
1400 38 22.81 3.90 1.164 0.407 35 10

a and m 20 20 151.46 3.39 0.904 1.494 154 48
(Fig. 5) 800 20 20.12 14.7 0.858 0.475 21 2
c and m 20 20 53.94 3.31 0.904 1.494 84 24
(Fig. 6) 800 20 19.60 2.30 0.858 0.475 48 21

*A total of 40 uniaxial or 20 biaxial specimens were broken at each temperature
Average flexure strength of the number of specimens indicated
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Figure 1. (a) Side view of sapphire crystal showing mineralogical designations of
faces and (b) view down 3-fold crystallographic c-axis.
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Figure 2. Sapphire bend bar with
c-axis perpendicular to tensile
surface and tension directed
along the rn-axis.
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Figure 3. Sapphire bend bar with
tensile face defined by the c- and
rn-axes and tension directed
along the c-axis.

Figure 4. Sapphire bend bar with
c-axis perpendicuar to tensile
surface and tension directed
along the a-axis.
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Figure 10. Variation of c-axis
flexure strength with
temperture.
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Figure 9. Variation of rn-axis
flexure strength with
temperature.
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Figure 1 1 . Variation of a-axis
flexure strength with
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Figure 8. Crack orientation geometry.
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Figure 13. Variation of biaxial flexure
strength with temperature (c-axis and
rn-axis in tensile surface.
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Figure 12. Variation of biaxial flexure
strength with temperature (a-axis and
rn-axis in tensile surface.
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Figure 14. rn-Axis uniaxial probability of failure (20°C).
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Figure 15. c-Axis uniaxial probability of failure (20°C).
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Figure 16. a-Axis uniaxial probability of failure (20°C).
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Figure 18. c-Axi s/rn -axis biaxial probability of failure (20°C).
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Figure 17. a.Axis/rn -axis biaxial probability of failure (20°C).
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